Task Partitioning in a Robot Swarm: Object Retrieval as a Sequence of Subtasks with Direct Object Transfer
نویسندگان
چکیده
We study task partitioning in the context of swarm robotics. Task partitioning is the decomposition of a task into subtasks that can be tackled by different workers. We focus on the case in which a task is partitioned into a sequence of subtasks that must be executed in a certain order. This implies that the subtasks must interface with each other, and that the output of a subtask is used as input for the subtask that follows. A distinction can be made between task partitioning with direct transfer and with indirect transfer. We focus our study on the first case: The output of a subtask is directly transferred from an individual working on that subtask to an individual working on the subtask that follows. As a test bed for our study, we use a swarm of robots performing foraging. The robots have to harvest objects from a source, situated in an unknown location, and transport them to a home location. When a robot finds the source, it memorizes its position and uses dead reckoning to return there. Dead reckoning is appealing in robotics, since it is a cheap localization method and it does not require any additional external infrastructure. However, dead reckoning leads to errors that grow in time if not corrected periodically. We compare a foraging strategy that does not make use of task partitioning with one that does. We show that cooperation through task partitioning can be used to limit the effect of dead reckoning errors. This results in improved capability of locating the object source and in increased performance of the swarm. We use the implemented system as a test bed to study benefits and costs of task partitioning with direct transfer. We implement the system with real robots, demonstrating the feasibility of our approach in a foraging scenario.
منابع مشابه
Task partitioning in a robot swarm: retrieving objects by transferring them directly between sequential sub-tasks
In this work, we study task partitioning in the context of swarm robotics. Task partitioning refers to the decomposition of a task into sub-tasks that can be tackled by different workers. In this work, we focus on the case in which a task is partitioned into a sequence of sub-tasks that must be executed in a certain order. This implies that the sub-tasks must interface with each other, and that...
متن کاملPlanning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions
This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...
متن کاملCorrection: Evolution of Self-Organized Task Specialization in Robot Swarms
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Rec...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملEvolution of Self-Organized Task Specialization in Robot Swarms
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial life
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2014